3.168 \(\int \frac {\cos (c+d x) (A+A \sec (c+d x))}{\sqrt {a-a \sec (c+d x)}} \, dx\)

Optimal. Leaf size=115 \[ \frac {A \sin (c+d x)}{d \sqrt {a-a \sec (c+d x)}}+\frac {3 A \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a-a \sec (c+d x)}}\right )}{\sqrt {a} d}-\frac {2 \sqrt {2} A \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a-a \sec (c+d x)}}\right )}{\sqrt {a} d} \]

[Out]

3*A*arctan(a^(1/2)*tan(d*x+c)/(a-a*sec(d*x+c))^(1/2))/d/a^(1/2)-2*A*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a-a
*sec(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)+A*sin(d*x+c)/d/(a-a*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 115, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.156, Rules used = {4022, 3920, 3774, 203, 3795} \[ \frac {A \sin (c+d x)}{d \sqrt {a-a \sec (c+d x)}}+\frac {3 A \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a-a \sec (c+d x)}}\right )}{\sqrt {a} d}-\frac {2 \sqrt {2} A \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a-a \sec (c+d x)}}\right )}{\sqrt {a} d} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]*(A + A*Sec[c + d*x]))/Sqrt[a - a*Sec[c + d*x]],x]

[Out]

(3*A*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a - a*Sec[c + d*x]]])/(Sqrt[a]*d) - (2*Sqrt[2]*A*ArcTan[(Sqrt[a]*Tan[c
 + d*x])/(Sqrt[2]*Sqrt[a - a*Sec[c + d*x]])])/(Sqrt[a]*d) + (A*Sin[c + d*x])/(d*Sqrt[a - a*Sec[c + d*x]])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3774

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(a + x^2), x], x, (b*C
ot[c + d*x])/Sqrt[a + b*Csc[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 3920

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c/a,
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 4022

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[1
/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - A*b*(m + n + 1)*Csc[e + f*x
], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\cos (c+d x) (A+A \sec (c+d x))}{\sqrt {a-a \sec (c+d x)}} \, dx &=\frac {A \sin (c+d x)}{d \sqrt {a-a \sec (c+d x)}}-\frac {\int \frac {-\frac {3 a A}{2}-\frac {1}{2} a A \sec (c+d x)}{\sqrt {a-a \sec (c+d x)}} \, dx}{a}\\ &=\frac {A \sin (c+d x)}{d \sqrt {a-a \sec (c+d x)}}+(2 A) \int \frac {\sec (c+d x)}{\sqrt {a-a \sec (c+d x)}} \, dx+\frac {(3 A) \int \sqrt {a-a \sec (c+d x)} \, dx}{2 a}\\ &=\frac {A \sin (c+d x)}{d \sqrt {a-a \sec (c+d x)}}+\frac {(3 A) \operatorname {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,\frac {a \tan (c+d x)}{\sqrt {a-a \sec (c+d x)}}\right )}{d}-\frac {(4 A) \operatorname {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,\frac {a \tan (c+d x)}{\sqrt {a-a \sec (c+d x)}}\right )}{d}\\ &=\frac {3 A \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a-a \sec (c+d x)}}\right )}{\sqrt {a} d}-\frac {2 \sqrt {2} A \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a-a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {A \sin (c+d x)}{d \sqrt {a-a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.50, size = 269, normalized size = 2.34 \[ \frac {A e^{-\frac {1}{2} i (c+d x)} \sin \left (\frac {1}{2} (c+d x)\right ) \sec (c+d x) \left (\cos \left (\frac {1}{2} (c+d x)\right )+i \sin \left (\frac {1}{2} (c+d x)\right )\right ) \left (3 e^{-\frac {1}{2} i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \sinh ^{-1}\left (e^{i (c+d x)}\right )+e^{-\frac {1}{2} i (c+d x)} \left (e^{-i (c+d x)}+e^{i (c+d x)}+e^{2 i (c+d x)}-4 \sqrt {2} \sqrt {1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\frac {1+e^{i (c+d x)}}{\sqrt {2} \sqrt {1+e^{2 i (c+d x)}}}\right )+3 \sqrt {1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\sqrt {1+e^{2 i (c+d x)}}\right )+1\right )\right )}{2 d \sqrt {a-a \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]*(A + A*Sec[c + d*x]))/Sqrt[a - a*Sec[c + d*x]],x]

[Out]

(A*((3*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcSinh[E^(I*(c + d*x))])/E^((I/2)*(c + d*x)) + (1 + E^((-I)*(c + d*x)) +
 E^(I*(c + d*x)) + E^((2*I)*(c + d*x)) - 4*Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[(1 + E^(I*(c + d*x)))
/(Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))])] + 3*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[Sqrt[1 + E^((2*I)*(c + d*x
))]])/E^((I/2)*(c + d*x)))*Sec[c + d*x]*(Cos[(c + d*x)/2] + I*Sin[(c + d*x)/2])*Sin[(c + d*x)/2])/(2*d*E^((I/2
)*(c + d*x))*Sqrt[a - a*Sec[c + d*x]])

________________________________________________________________________________________

fricas [A]  time = 0.45, size = 435, normalized size = 3.78 \[ \left [\frac {2 \, \sqrt {2} A a \sqrt {-\frac {1}{a}} \log \left (-\frac {2 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} - {\left (3 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right )}{{\left (\cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right )}\right ) \sin \left (d x + c\right ) - 3 \, A \sqrt {-a} \log \left (\frac {2 \, {\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )}} - {\left (2 \, a \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right )}{\sin \left (d x + c\right )}\right ) \sin \left (d x + c\right ) - 2 \, {\left (A \cos \left (d x + c\right )^{2} + A \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )}}}{2 \, a d \sin \left (d x + c\right )}, \frac {2 \, \sqrt {2} A \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) \sin \left (d x + c\right ) - 3 \, A \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) \sin \left (d x + c\right ) - {\left (A \cos \left (d x + c\right )^{2} + A \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )}}}{a d \sin \left (d x + c\right )}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+A*sec(d*x+c))/(a-a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/2*(2*sqrt(2)*A*a*sqrt(-1/a)*log(-(2*sqrt(2)*(cos(d*x + c)^2 + cos(d*x + c))*sqrt((a*cos(d*x + c) - a)/cos(d
*x + c))*sqrt(-1/a) - (3*cos(d*x + c) + 1)*sin(d*x + c))/((cos(d*x + c) - 1)*sin(d*x + c)))*sin(d*x + c) - 3*A
*sqrt(-a)*log((2*(cos(d*x + c)^2 + cos(d*x + c))*sqrt(-a)*sqrt((a*cos(d*x + c) - a)/cos(d*x + c)) - (2*a*cos(d
*x + c) + a)*sin(d*x + c))/sin(d*x + c))*sin(d*x + c) - 2*(A*cos(d*x + c)^2 + A*cos(d*x + c))*sqrt((a*cos(d*x
+ c) - a)/cos(d*x + c)))/(a*d*sin(d*x + c)), (2*sqrt(2)*A*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) - a)/cos
(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)))*sin(d*x + c) - 3*A*sqrt(a)*arctan(sqrt((a*cos(d*x + c) - a)/co
s(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)))*sin(d*x + c) - (A*cos(d*x + c)^2 + A*cos(d*x + c))*sqrt((a*co
s(d*x + c) - a)/cos(d*x + c)))/(a*d*sin(d*x + c))]

________________________________________________________________________________________

giac [C]  time = 1.15, size = 238, normalized size = 2.07 \[ -\frac {\frac {{\left (-2 i \, \sqrt {2} A \arctan \left (-i\right ) + 3 i \, A \arctan \left (-\frac {1}{2} i \, \sqrt {2}\right ) + \sqrt {2} A\right )} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}{\sqrt {-a}} + \frac {2 \, \sqrt {2} A \arctan \left (\frac {\sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a}}{\sqrt {a}}\right )}{\sqrt {a} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right ) \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {3 \, A \arctan \left (\frac {\sqrt {2} \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a}}{2 \, \sqrt {a}}\right )}{\sqrt {a} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right ) \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {\sqrt {2} \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a} A}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a\right )} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right ) \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+A*sec(d*x+c))/(a-a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-((-2*I*sqrt(2)*A*arctan(-I) + 3*I*A*arctan(-1/2*I*sqrt(2)) + sqrt(2)*A)*sgn(tan(1/2*d*x + 1/2*c))/sqrt(-a) +
2*sqrt(2)*A*arctan(sqrt(a*tan(1/2*d*x + 1/2*c)^2 - a)/sqrt(a))/(sqrt(a)*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)*sgn(ta
n(1/2*d*x + 1/2*c))) - 3*A*arctan(1/2*sqrt(2)*sqrt(a*tan(1/2*d*x + 1/2*c)^2 - a)/sqrt(a))/(sqrt(a)*sgn(tan(1/2
*d*x + 1/2*c)^2 - 1)*sgn(tan(1/2*d*x + 1/2*c))) - sqrt(2)*sqrt(a*tan(1/2*d*x + 1/2*c)^2 - a)*A/((a*tan(1/2*d*x
 + 1/2*c)^2 + a)*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)*sgn(tan(1/2*d*x + 1/2*c))))/d

________________________________________________________________________________________

maple [A]  time = 1.72, size = 154, normalized size = 1.34 \[ -\frac {A \left (1+\cos \left (d x +c \right )\right ) \left (-2 \sqrt {2}\, \arctan \left (\frac {1}{\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+\cos \left (d x +c \right ) \sqrt {2}-3 \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right ) \sqrt {\frac {a \left (-1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \sqrt {2}}{2 d \sin \left (d x +c \right ) a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(A+A*sec(d*x+c))/(a-a*sec(d*x+c))^(1/2),x)

[Out]

-1/2*A/d*(1+cos(d*x+c))*(-2*2^(1/2)*arctan(1/(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2))*(-2*cos(d*x+c)/(1+cos(d*x+c
)))^(1/2)+cos(d*x+c)*2^(1/2)-3*arctan(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))*(-2*cos(d*x+c)/(1+cos(
d*x+c)))^(1/2))*(a*(-1+cos(d*x+c))/cos(d*x+c))^(1/2)/sin(d*x+c)/a*2^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (A \sec \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )}{\sqrt {-a \sec \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+A*sec(d*x+c))/(a-a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((A*sec(d*x + c) + A)*cos(d*x + c)/sqrt(-a*sec(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\cos \left (c+d\,x\right )\,\left (A+\frac {A}{\cos \left (c+d\,x\right )}\right )}{\sqrt {a-\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)*(A + A/cos(c + d*x)))/(a - a/cos(c + d*x))^(1/2),x)

[Out]

int((cos(c + d*x)*(A + A/cos(c + d*x)))/(a - a/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ A \left (\int \frac {\cos {\left (c + d x \right )}}{\sqrt {- a \sec {\left (c + d x \right )} + a}}\, dx + \int \frac {\cos {\left (c + d x \right )} \sec {\left (c + d x \right )}}{\sqrt {- a \sec {\left (c + d x \right )} + a}}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+A*sec(d*x+c))/(a-a*sec(d*x+c))**(1/2),x)

[Out]

A*(Integral(cos(c + d*x)/sqrt(-a*sec(c + d*x) + a), x) + Integral(cos(c + d*x)*sec(c + d*x)/sqrt(-a*sec(c + d*
x) + a), x))

________________________________________________________________________________________